понедельник, 18 мая 2009 г.

Синтаксис ассемблера. Директива SEGMENT

Директивы

Ассемблер имеет ряд операторов, которые позволяют управлять процессом ассемблирования и формирования листинга. Эти операторы называются псевдокомандами или директивами. Они действуют только в процессе ассемблирования программы и не генерируют машинных кодов. Директивы формирования листинга не очень интересны, так как вывести на печать текст программы не составляет труда для любого современного редактора.
Директивы ассемблирования буду изучать и по ходу дела добавлять их в блог. К сожалению, стройного и полного описания директив ассемблирования и примеров, разъясняющих их назначение и разницу между их параметрами, нет ни в одной из имеющихся у меня книг. Более-менее они описаны опять же у старичка Абеля (но книжка все таки старовата) и не плохое есть описание есть у Юрова, но что тот, что другой не приводят ни каких примеров, которые бы пояснили разницу между параметрами директивы SEGMENT и т.д. Так что придется все исследовать самостоятельно.

Директива SEGMENT

Любые ассемблерные программы содержат, по крайней мере, один сегмент - сегмент кода. В некоторых программах используется сегмент для стековой памяти и сегмент данных для определения данных.
Еще раз вспомним, что физически сегмент представляет собой область памяти, занятую командами и (или) данными, адреса которых вычисляются относительно значения в соответствующем сегментном регистре.

Стандартные Директивы Сегментации

Синтаксическое описание сегмента на ассемблере представляет собой конструкцию, изображенную на рисунке ниже:

Важно отметить, что функциональное назначение сегмента несколько шире, чем простое разбиение программы на блоки кода, данных и стека. Сегментация является частью более общего механизма, связанного с концепцией модульного программирования. Она предполагает унификацию оформления объектных модулей, создаваемых компилятором, в том числе с разных языков программирования. Это позволяет объединять программы, написанные на разных языках. Именно для реализации различных вариантов такого объединения и предназначены операнды в директиве SEGMENT.
Рассмотрим их подробнее.

  • Атрибут выравнивания сегмента (тип выравнивания) сообщает компоновщику о том, что нужно обеспечить размещение начала сегмента на заданной границе. Это важно, поскольку при правильном выравнивании доступ к данным в процессорах i80х86 выполняется быстрее. Допустимые значения этого атрибута следующие:
    • BYTE — выравнивание не выполняется. Сегмент может начинаться с любого адреса памяти;
    • WORD — сегмент начинается по адресу, кратному двум, то есть последний (младший) значащий бит физического адреса равен 0 (выравнивание на границу слова);
    • DWORD — сегмент начинается по адресу, кратному четырем, то есть два последних (младших) значащих бита равны 0 (выравнивание на границу двойного слова);
    • PARA — сегмент начинается по адресу, кратному 16, то есть последняя шестнадцатеричная цифра адреса должна быть 0h (выравнивание на границу параграфа);
    • PAGE — сегмент начинается по адресу, кратному 256, то есть две последние шестнадцатеричные цифры должны быть 00h (выравнивание на границу 256-байтной страницы);
    • MEMPAGE — сегмент начинается по адресу, кратному 4 Кбайт, то есть три последние шестнадцатеричные цифры должны быть 000h (адрес следующей 4-Кбайтной страницы памяти).
    • По умолчанию тип выравнивания имеет значение PARA.


  • Атрибут комбинирования сегментов (комбинаторный тип) сообщает компоновщику, как нужно комбинировать сегменты различных модулей, имеющие одно и то же имя. Значениями атрибута комбинирования сегмента могут быть:
    • PRIVATE — сегмент не будет объединяться с другими сегментами с тем же именем вне данного модуля;
    • PUBLIC — заставляет компоновщик соединить все сегменты с одинаковыми именами. Новый объединенный сегмент будет целым и непрерывным. Все адреса (смещения) объектов, а это могут быть, в зависимости от типа сегмента, команды и данные, будут вычисляться относительно начала этого нового сегмента;
    • COMMON — располагает все сегменты с одним и тем же именем по одному адресу. Все сегменты с данным именем будут перекрываться и совместно использовать память. Размер полученного в результате сегмента будет равен размеру самого большого сегмента;
    • AT xxxx — располагает сегмент по абсолютному адресу параграфа (параграф — объем памяти, кратный 16; поэтому последняя шестнадцатеричная цифра адреса параграфа равна 0). Абсолютный адрес параграфа задается выражением xxx. Компоновщик располагает сегмент по заданному адресу памяти (это можно использовать, например, для доступа к видеопамяти или области ПЗУ), учитывая атрибут комбинирования. Физически это означает, что сегмент при загрузке в память будет расположен, начиная с этого абсолютного адреса параграфа, но для доступа к нему в соответствующий сегментный регистр должно быть загружено заданное в атрибуте значение. Все метки и адреса в определенном таким образом сегменте отсчитываются относительно заданного абсолютного адреса;
    • STACK — определение сегмента стека. Заставляет компоновщик соединить все одноименные сегменты и вычислять адреса в этих сегментах относительно регистра ss. Комбинированный тип STACK (стек) аналогичен комбинированному типу PUBLIC, за исключением того, что регистр ss является стандартным сегментным регистром для сегментов стека. Регистр sp устанавливается на конец объединенного сегмента стека. Если не указано ни одного сегмента стека, компоновщик выдаст предупреждение, что стековый сегмент не найден. Если сегмент стека создан, а комбинированный тип STACK не используется, программист должен явно загрузить в регистр ss адрес сегмента (подобно тому, как это делается для регистра ds), а также установить регистр SP в правильное значение.
    • По умолчанию атрибут комбинирования принимает значение PRIVATE.


  • Атрибут класса сегмента (тип класса) — это заключенная в кавычки строка, помогающая компоновщику определить соответствующий порядок следования сегментов при собирании программы из сегментов нескольких модулей. Компоновщик объединяет вместе в памяти все сегменты с одним и тем же именем класса (имя класса, в общем случае, может быть любым, но лучше, если оно будет отражать функциональное назначение сегмента). Типичным примером использования имени класса является объединение в группу всех сегментов кода программы (обычно для этого используется класс 'code'). С помощью механизма типизации класса можно группировать также сегменты инициализированных и не инициализированных данных.

  • Атрибут размера сегмента. Для процессоров i80386 и выше сегменты могут быть 16 или 32-разрядными. Это влияет, прежде всего, на размер сегмента и порядок формирования физического адреса внутри него. Атрибут может принимать следующие значения:
    • USE16 — это означает, что сегмент допускает 16-разрядную адресацию. При формировании физического адреса может использоваться только 16-разрядное смещение. Соответственно, такой сегмент может содержать до 64 Кбайт кода или данных;
    • USE32 — сегмент будет 32-разрядным. При формирования физического адреса может использоваться 32-разрядное смещение. Поэтому такой сегмент может содержать до 4 Гбайт кода или данных.
Директива ENDS обозначает конец сегмента. Обе директивы SEGMENT и ENDS должны иметь одинаковые имена.

Упрощенные Директивы Сегментации

Стандартные директивы сегментации изначально использовались для оформления программы в трансляторах MASM и TASM. Поэтому их называют стандартными директивами сегментации. Для простых программ, содержащих по одному сегменту для кода, данных и стека, хотелось бы упростить ее описание. Для этого в трансляторы MASM и TASM ввели возможность использования упрощенных директив сегментации. Но здесь возникла проблема, связанная с тем, что необходимо было как-то компенсировать невозможность напрямую управлять размещением и комбинированием сегментов. Для этого совместно с упрощенными директивами сегментации стали использовать директиву указания модели памяти MODEL, которая частично стала управлять размещением сегментов и выполнять функции директивы ASSUME (поэтому при использовании упрощенных директив сегментации директиву ASSUME можно не использовать). Директива MODEL связывает сегменты, которые в случае использования упрощенных директив сегментации имеют предопределенные имена, с сегментными регистрами (хотя явно инициализировать ds все равно придется).
Пример программы с использованием упрощенных директив сегментации:

;----------------------------------------
masm ;режим работы TASM: ideal или masm
model small ;модель памяти
.data ;сегмент данных
message db 'Введите две шестнадцатеричные цифры,$'
.stack ;сегмент стека
db 256 dup ('?') ;сегмент стека
.code ;сегмент кода
main proc ;начало процедуры main
mov ax,@data ;заносим адрес сегмента
;данных в регистр ax
mov ds,ax ;ax в ds
;далее текст программы (см. сегмента кода в листинге 3.1 книги)
mov ax,4c00h ;пересылка 4c00h в регистр ax
int 21h ;вызов прерывания с номером 21h
main endp ;конец процедуры main
end main ;конец программы с точкой входа main

Синтаксис директивы MODEL:


Модификатор модели памяти

Значение модификатора Назначение
use16 Сегменты выбранной модели используются как 16-битные (если соответствующей директивой указан процессор i80386 или i80486)
use32 Сегменты выбранной модели используются как 32-битные (если соответствующей директивой указан процессор i80386 или i80486)
dos Программа будет работать в MS-DOS

Модель памяти является обязательным параметром директивы MODEL. Этот параметр определяет модель сегментации памяти для программного модуля.

Модели памяти
Модель Тип кода Тип данных Назначение модели
TINY near near Код, данные и стек объединены в одну группу с именем DGROUP и размером до 64Кб. Используется для создания программ формата .com. Некоторые языки эту модель не поддерживают.
СS=DS=SS=DGROUP
SMALL near near Код занимает один сегмент, данные и стек объединены в одну группу с именем DGROUP (хотя для описания могут использоваться разные сегменты). Эту модель обычно используют для большинства программ на ассемблере.
CS=_text
DS=SS=DGROUP
MEDIUM far near Код занимает несколько сегментов, по одному на каждый объединяемый программный модуль. Все ссылки на передачу управления — типа far (вызов подпрограмм). Данные и стек объединены в одной группе DGROUP; все ссылки на них — типа near (для доступа к данным испльзуется только смещение).
CS=<модуль>_text
DS=SS=DGROUP
COMPACT near far Код находится в одном сегменте, данные и стек в группе DGROUP и могут занимать несколько сегментов, так что для обращения к данным требуется указывать сегмент и смещение (
ссылка на данные — типа far).
CS=_text
DS=SS=DGROUP
LARGE far far Код может занимать несколько сегментов, по одному на каждый объединяемый программный модуль. Стек и данные находятся в группе DGROUP. Для ссылки на данные используются дальние указатели -far.
CS=<модуль>_text
DS=SS=DGROUP
HUGE far far Тоже что и модель LARGE, что касается TurboAssebmler.
FLAT far far Тоже, что и TINY, но используются 32-битная адресация, так что максимальный размер сегмента, содержащего и данные, и код, и стек - 4Гб.

Предполагается, что программный модуль может иметь только определенные типы сегментов, которые определяются упомянутыми нами ранее упрощенными директивами описания сегментов. Эти директивы приведены в таблице ниже.

Упрощенные директивы определения сегмента
Формат директивы
(режим MASM)
Формат директивы
(режим IDEAL)
Назначение
.CODE [имя] CODESEG[имя] Начало или продолжение сегмента кода
.DATA DATASEG Начало или продолжение сегмента инициализированных данных. Также используется для определения данных типа near
.CONST CONST Начало или продолжение сегмента постоянных данных (констант) модуля
.DATA? UDATASEG Начало или продолжение сегмента неинициализированных данных. Также используется для определения данных типа near
.STACK [размер] STACK [размер] Начало или продолжение сегмента стека модуля. Параметр [размер] задает размер стека
.FARDATA [имя] FARDATA [имя] Начало или продолжение сегмента инициализированных данных типа far
.FARDATA? [имя] UFARDATA [имя] Начало или продолжение сегмента неинициализированных данных типа far

Наличие в некоторых директивах параметра [имя] говорит о том, что возможно определение нескольких сегментов этого типа. С другой стороны, наличие нескольких видов сегментов данных обусловлено требованием обеспечить совместимость с некоторыми компиляторами языков высокого уровня, которые создают разные сегменты данных для инициализированных и неинициализированных данных, а также констант.

При использовании директивы MODEL транслятор делает доступными несколько идентификаторов, к которым можно обращаться во время работы программы, с тем, чтобы получить информацию о тех или иных характеристиках данной модели памяти.

Идентификаторы, создаваемые директивой MODEL
Имя идентификатора Значение переменной
@code Физический адрес сегмента кода
@data Физический адрес сегмента данных типа near
@fardata Физический адрес сегмента данных типа far
@fardata? Физический адрес сегмента неинициализированных данных типа far
@curseg Физический адрес сегмента неинициализированных данных типа far
@stack Физический адрес сегмента стека

Если вы посмотрите на текст примера, то увидите пример использования одного из этих идентификаторов. Это @data – с его помощью мы получили значение физического адреса сегмента данных нашей программы.

Необязательные параметры язык и модификатор языка определяют некоторые особенности вызова процедур. Необходимость в использовании этих параметров появляется при написании и связывании программ на различных языках программирования.

Языкнеобязательный операнд, принимающий значения C, PASCAL, BASIC, FORTRAN, SYSCALL и STDCALL. Если он указан, подразумевается, что процедуры рассчитаны на вызов из программ на соответствующем языке высокого уровня, следовательно, если указан язык C, все имена ассемблерных процедур, объявленных как PUBLIC, будут изменены так, чтобы начинаться с символа подчеркивания, как это принято в C.
Модификаторнеобязательный операнд, принимающий значения NEARSTACK (по умолчанию) или FARSTACK. Во втором случае сегмент стека не будет объединяться в одну группу с сегментами данных.
После того как модель памяти установлена, вступают в силу упрощенные директивы определения сегментов, объединяющие действия директив SEGMENT и ASSUME. Кроме того, сегменты, объявленные упрощенными директивами, не требуется закрывать директивой ENDS — они закрываются автоматически, как только ассемблер обнаруживает новую директиву определения сегмента или конец программы.

Директива .CODE описывает основной сегмент кода

.code имя_сегмента

эквивалентно:

_TEXT segment word public ’CODE’

для моделей TINY, SMALL и COMPACT

name_TEXT segment word public ’CODE’

для моделей MEDIUM, HUGE и LARGE (name — имя модуля, в котором описан данный сегмент). В этих моделях директива .CODE также допускает необязательный операнд — имя определяемого сегмента, но все сегменты кода, описанные так в одном и том же модуле, объединяются в один сегмент с именем NAME_TEXT.

Директива .STACK описывает сегмент стека

.stack размер

эквивалентно:

STACK segment para public ’stack’

Необязательный параметр указывает размер стека. По умолчанию он равен 1 Кб.

Директива .DATA описывает обычный сегмент данных

.data

эквивалентно:

_DATA segment word public ’DATA’

Директива .DATA? описывает сегмент неинициализированных данных

.data?

Эквивалентно:

_BSS segment word public ’BSS’

Этот сегмент обычно не включается в программу, а располагается за концом памяти, так что все описанные в нем переменные на момент загрузки программы имеют неопределенные значения.

Директива .CONST описывает сегмент неизменяемых данных

.const

Эквивалентно:

CONST segment word public ’CONST’

В некоторых операционных системах этот сегмент будет загружен так, что попытка записи в него может привести к ошибке.

Директива .FARDATA описывает сегмент дальних данных

.fardata имя_сегмента

эквивалентно:

имя_сегмента segment para private ’FAR_DATA’

Доступ к данным, описанным в этом сегменте, потребует загрузки сегментного регистра. Если не указан операнд, в качестве имени сегмента используется FAR_DATA.

Директива .FARDATA? описывает сегмент дальних неинициализированных данных

.fardata? имя_сегмента

эквивалентно:

имя_сегмента segment para private ’FAR_BSS’

Как и в случае с FARDATA, доступ к данным из этого сегмента потребует загрузки сегментного регистра. Если имя сегмента не указано, используется FAR_BSS.

Во всех моделях памяти сегменты, представленные директивами .DATA, .DATA?, .CONST, .FARDATA и .FARDATA?, а также сегмент, описанный директивой .STACK, если не был указан модификатор FARSTACK, и сегмент .CODE в модели TINY автоматически объединяются в группу с именем FLAT — для модели памяти FLAT или DGROUPдля всех остальных моделей. При этом сегментный регистр DS (и SS, если не было FARSTACK, и CS в модели TINY) настраивается на всю эту группу, как если бы была выполнена команда ASSUME.

Порядок загрузки сегментов

При использовании стандартных директив сегментации сегменты загружаются в память в том порядке, в котором они описываются в тексте программы.

При использовании упрощенных директив сегментации (по умолчанию) устанавливается порядок загрузки сегментов, существующий в MS DOS и часто требуемый для взаимодействия программ на ассемблере с программами на языках высокого уровня.

Порядок загрузки сегментов:

1. Все сегменты класса 'CODE'.
2. Все сегменты, не принадлежащие группе DGROUP и классу 'CODE'.
3. Группа сегментов DGROUP:
3.1. Все сегменты класса 'BEGDATA'.
3.2. Все сегменты, кроме классов 'BEGDATA', 'BSS' и 'STACK'.
3.3. Все сегменты класса 'BSS'.
3.4. Все сегменты класса 'STACK'.

Знание порядка загрузки сегментов необходимо, например, для вычисления длины программы или адреса ее конца. Для этого надо знать, какой сегмент будет загружен последним, и смещение последнего байта в нем.

P.S. В книге Зубкова, порядок загрузки сегментов описан несколько иначе, НО практика показала, что его описание не правильное. При использовании упрощенных директив сегментации, директива .seq, которая, по идее должна устанавливать порядок загрузки сегментов, как они описаны в прорамме, этого не делает! А делает это дериктива .alpha, и то, только при использовании TASM, только в модели small, и при этом она добавляет заголовок в exe файл длиной 600h байт! MASM же, при использовании упрощенных директив сегментации всегда размещает сегменты в соответствии с порядком MS DOS, забивая на директивы .seq и .alpha. И еще с выравниванием сегментов, при использовании упрощенных директив сегментации, происходит какая-то свистопляска :). Все это выявлено опытным путем. Все в следующих сериях супер сериала "Hello World". И так, жем вас у экранов мониторов :)

6 комментариев:

Анонимный комментирует...

ГРИЦЕНКО, ЭТО ТЫ?

Анонимный комментирует...

Да, Байдин, это я.

-=*=- комментирует...

мужики... вы кто блин? и от куда? и че тут за базар в комментах? )))))

Unknown комментирует...

FLAT - near; near же

Unknown комментирует...

2020, Гриценко все ещё преподает 16битный ассемблер

Unknown комментирует...

Как насчет асма под х64?